Helicoidal Surfaces and Their Relationship to Bonnet Surfaces
نویسندگان
چکیده
منابع مشابه
Helicoidal Surfaces and Their Gauss Map in Minkowski 3-space
The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.
متن کاملHermite Polynomials And Helicoidal Minimal Surfaces
The main objective of this paper is to construct smooth 1-parameter families of embedded minimal surfaces in euclidean space that are invariant under a screw motion and are asymptotic to the helicoid. Some of these families are significant because they generalize the screw motion invariant helicoid with handles and thus suggest a pathway to the construction of higher genus helicoids. As a bypro...
متن کاملLinear Weingarten Helicoidal Surfaces in Isotropic Space
Introduced in 1861 [1], a Weingarten surface in the Euclidean three-dimensional space E3 is a surface M, whose mean curvature H and Gaussian curvature K satisfy a non-trivial relation Φ(H, K) = 0. Such a surface was introduced by Weingarten. The class of Weingarten surfaces is remarkably large, and it consists of intriguing surfaces in the Euclidean space: the constant mean curvature surfaces, ...
متن کاملSchlesinger Transformations for Bonnet Surfaces
Bonnet surfaces, i.e. surfaces in Euclidean 3-space, which admits a one-parameter family of isometries preserving the mean curvature function, can be described in terms of solutions of some special Painlev e equations. The goal of this work is to use the well-known Schlesinger transformations for solutions of Painlev e VI equations to create new Bonnet surfaces from a known one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2017
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2017.71003